Warm-Up:

1) Rewrite in logarithmic form.

$$12^2 = 144$$

2) Evaluate the logarithm.

a)
$$\log_{4}64$$
b=8 y=y x=16
b=8 y=y x=16
x=61
y=3
y=3
3y=24

NC Final Exam Released Question

Which function is equivalent to $y = x^2 - 6x + 10$?

A
$$y = (x + 3)^2 - 1$$

B
$$y = (x - 3)^2 + 1$$

C
$$y = (x + 6)^2 - 10^2$$

D
$$y = (x - 6)^2 + 10$$

Which function is equivalent to
$$y = x^2 - 6x + 10$$
?

A $y = (x + 3)^2 - 1$

B $y = (x - 3)^2 + 1$

C $y = (x + 6)^2 - 10$

D $y = (x - 6)^2 + 10$

$$y = (x - 6)^2 + 10$$

$$y = (x - 3)^3 + 1$$

ACT Question of the Day

2. The monthly fees for single rooms at 5 colleges are \$370, \$310, \$380, \$340, and \$310, respectively. What is the mean of these monthly fees?

F. \$310

G. \$340

H. \$342

\$350

K. \$380

Unit 6 ~ Logarithms & Exponentials

<u>Day 3</u>: Properties of Logarithms

What's Happening here???

- 1. Take 30 secs to think about what's happening?
- 2. Based on your observation, write down the property for each log
- 3. Share with a partner

$$log_3(5) + log_3(6) = log_3(30)$$

$$\log_5(10) - \log_5(2) = \log_5(5)$$

$$2\log_4(3) = \log_4(3^2)$$

Example 2:

Write each expression as a single logarithm.

a)
$$\log 7 + \log 2$$
 b) $\log 15 - \log 3$ $\log (7.2) = \log 14$ $\log (5) = \log 5$

e)4logm - 5logn f)
$$\log_{6}5 + \log_{6}x + 6\log_{6}y$$

e)4logm - 5logn f)
$$\log_6 5 + \log_6 x + 6\log_6 y$$
 $\log_7 m^4 - \log_7 n^5 \log_7 m^4 \log_7 x + \log_7 y^6$
g) $\log_3 4 + \log_3 y - \log_3 x^3$
 $\log_3 4 + \log_3 y - \log_3 x^3$
 $\log_3 4 + \log_3 y - \log_3 x^3$

Properties of Logartihms

$$2^{nd}$$
 flap outside. 2^{nd} frap top
Quotient Property: $\log_b \frac{m}{n} = \log_b m - \log_b n$

<u>Power Property</u>: $log_b m^n = nlog_b m$

Change of Base Formula:

$$log_b m = \frac{logm}{logb}$$
 Use this when the bases are diff

Example 1:

Use the Change of Base Formula to evaluate each expression.

a)
$$\log_{12}20$$
 b) \log_381 $\log_3 0$ c) $\log_3 54$ d) $\log_3 33$