Warm-up:

Part 1: Find the solutions by factoring.

1)
$$x^2 - 8x = 0$$

2)
$$3x^2 - 20 = -4x$$

Part 2: Find the solutions using the quadratic formula.

3)
$$x^2 + 8x = 11$$

4)
$$2x^2 + 4 = x$$

Page 1

Unit 2 ~ Quadratics

Objective: A.REI.4a

Day 3: Solving Quadratics by Completing the Square

ACT/SAT Practice:

What are the factors of $12c^2 + cd - 6d^2$?

$$(4c+3d)(3c-2d)$$

 $(4c-3d)(3c+2d)$

H.
$$(6c + d)(2c - 6d)$$

J.
$$6(2c - d)(c + d)$$

K.
$$6(2c + d)(c - d)$$

Page 2

Examples of perfect square trinomials

$$x^2 + 6x + 9$$
 $x^2 + 4x + 4$ $x^2 + 8x + 16$

*You can form a perfect square $\frac{rrinomial}{rrinomial}$ from $x^2 + bx$ by adding $\binom{a}{2}^2$.

Example 1: What value completes the square for $x^2 + 14x$?

$$\chi^{2} + 14x + (\frac{14}{2})^{2}$$

 $\chi^{2} + 14x + 49$
 $(x + 7)(x + 7) = (x + 7)^{2}$

Your Turn: What value completes the square for $x^2 - 6x$? $x^2 - 6x + (\frac{3}{2})$

$$\chi^{2}$$
 - $(0 \times t(\frac{3}{2})^{2})$
 χ^{3} - $(0 \times t)$ + (0×3)

$$(\chi-3)(\chi-3)=(\chi-3)^2$$

*STEPS for Solving an Equation by Completing the Square:

1) Rewrite the equation in the form $x^2 + bx = c$.

*All variables should be on the left side and all constants on the right.

*If the coefficient with x^2 is not 1, divide all the terms by the coefficient.

2) Complete the square by adding $(\frac{b}{2})^2$ to both sides.

3) Simplify.

4) Factor the left side. $(x + \underline{)^2}$

5) Take the square root of both sides. (Don't forget ± on the right side!)

6) Solve for x.

Page 5

Example 2: Solve $3x^2 - 18x - 3 = 0$ by completing the square.

$$\frac{3x^{3} - 18x - 3 = 0}{3(x^{3} - 6x - 1) = 0}$$

$$\frac{3(x^{3} - 6x - 1) = 0}{+ 1 + 1}$$

$$3(x^{2} - 6x + 9 = 1 + 9)$$

$$\frac{(-6)^{2} (-3)^{2} = 9}{3(x^{3} - 6x + 9) = 10}$$

$$\frac{3(x^{3} - 6x + 9) = 10}{3(-3)^{3} - 6x + 9} = 10$$

Page 7

Example 1: Solve $x^2 + 4x - 6 = 0$ by completing the square.

$$x^2 + 4x - 6 = 0$$

1.
$$ax^{2} + bx = C$$

 $x^{2} + 4x - 6 = 0$
 $x^{2} + 4x - 4 = 6 + 4$

2.
$$\left(\frac{b}{a}\right)^2 + \left(\frac{4}{2}\right)^2 = 4$$

3.
$$x^2 + 4x + 4 = 10$$

$$4. \quad 4 \quad \boxed{(x+2)^2 = 10}$$

Page 6

Your Turn: Find the solution of $x^2 - 10x + 4 = 0$ by completing the square.

$$\frac{\chi^{2} - 10x + 4 = 0}{-4 - 4}$$

$$\frac{\chi^{2} - 10x + 25}{(-\frac{10}{2})^{2} = 25}$$

$$\chi^{2} - 10x + 25 = 21$$

$$(\chi - 5)^{2} = 21$$

Practice Problems:

Part 1: Complete the Square

1)
$$x^{2} + 22x + \frac{|a|}{2}$$
 2) $x^{2} - 30x + 235$ $\left(\frac{30}{2}\right)^{2} - 35$

Part 2: Solve each quadratic equation by completing the square.

3)
$$\frac{x^{2}+10x-1=0}{|x|+|x|}$$
4) $\frac{2x^{2}-4x-14=0}{2}$
 $\frac{(10)^{2}=25}{(x^{2}-2x+1)=7+1}$
 $\frac{(10)^{2}=25}{(x^{2}-2x+1)=7+1}$
 $\frac{(10)^{2}=25}{(x^{2}-2x+1)=7+1}$
 $\frac{(-2a)^{2}=1}{(x^{2}-2x+1)=7+1}$
 $\frac{(-2a)^{2}=1}{(x^{2}-2x+1)=9}$

Page 9