\qquad

Friday Substitute Work

Complete each section of the sheet. Show ALL work. This work will be counted as a FORMAL grade. I have completed the first example for you for each section. Please be on your best behavior for the substitute. Please turn all work into the substitute! Have a great day!

Ms. Donoghue

Part A: Factor by Grouping

1) $8 r^{3}-64 r^{2}+r-8$
2) $12 p^{3}-21 p^{2}+28 p-49$
3) $12 x^{3}+2 x^{2}-30 x-5$
4) $6 v^{3}-16 v^{2}+21 v-56$
5) $63 n^{3}+54 n^{2}-105 n-90$
6) $21 k^{3}-84 k^{2}+15 k-60$

Part B: Factoring Trinomials when a > 1

1) $3 p^{2}-2 p-5$
2) $2 n^{2}+3 n-9$
3) $3 n^{2}-8 n+4$
4) $5 n^{2}+19 n+12$
5) $2 v^{2}+11 v+5$
6) $2 n^{2}+5 n+2$
7) $x^{3}+125$
8) $a^{3}+64$
9) $x^{3}-64$
10) $u^{3}+8$
11) $x^{3}-27$
12) $125-x^{3}$

Part D: Synthetic Division

Divide.

1) $\left(r^{2}+6 r+15\right) \div(r+5)$
2) $\left(r^{2}+10 r+13\right) \div(r+7)$
3) $\left(n^{3}-5 n^{2}-33 n-37\right) \div(n-9)$
4) $\left(x^{3}+6 x^{2}-30 x+102\right) \div(x+10)$
5) $\left(2 v^{3}-20 v^{2}+56 v-46\right) \div(v-6)$
6) $\left(8 r^{3}-49 r^{2}-45 r-36\right) \div(r-7)$
7) $\left(m^{3}-20\right) \div(m-3)$
8) $\left(2 k^{3}-13 k^{2}-77 k+60\right) \div(k-10)$

Part E: Adding and Subtracting Rationals

15) $\frac{7 n}{n+1}+\frac{8}{n-7}$
16) $\frac{2}{n+8}+\frac{4}{n+1}$
17) $\frac{3}{8}-\frac{3}{3 x+4}$
18) $\frac{3}{b-8}+\frac{7}{b+3}$
19) $\frac{3}{x+6}+\frac{7}{x-2}$
20) $\frac{4}{x+1}-\frac{2}{x+2}$

Part F: Inverse Functions: Solve each for the inverse:

1. $f(x)=\sqrt{x-4}$
2. $f(x)=4 x+5$
3. $f(x)=\sqrt{x+5}$
4. $f(x)=(x+6)^{2}$
5. $f(x)=\frac{x-3}{7}$
6. $f(x)=\sqrt[3]{x-7}$

Part G: Domain and Range:

Domain : \qquad
Range : \qquad
Domain : \qquad
Range : \qquad

Domain : \qquad
Range : \qquad

Domain : \qquad
Range : \qquad

Domain : \qquad
Range : \qquad

Part H: Solving Log Equations:

1. $2 \log x+\log 3=\log 75$
2. $\log _{5}(10 x+5)=3$
3. $\log _{7} 6 x=\log _{7}(x+15)$
4. $\log _{7} 64-\log _{7} 8 x=\log _{7} 40$
5. $\log _{3} 27+\log _{3} x=5$
