\qquad
Block: \qquad

"Our greatest weakness lies in giving up. The most certain way to succeed is always to try just one more time." - Thomas Edison

Monday

1) Divide the following using synthetic division:

$$
\left(3 x^{3}+12 x^{2}+11 x-2\right) \div(x+2)
$$

2) Divide the following using synthetic division:

$$
\left(3 x^{3}-5 x^{2}+2\right) \div(x-2)
$$

3) When the polynomial $\mathrm{p}(\mathrm{x})=\left(x^{3}+2 x^{2}-21 x+b\right)$ is divided by the expression $(x-3)$ the quotient is $\left(x^{2}+5 x-6\right)$, what is the value of b ?
4) The area of a rectangle is represented by the expression $\left(3 x^{3}-x^{2}-13 x+2\right)$. If the length of the rectangle is represented by $(x+2)$, what is the width?
5) The volume of a rectangular prism is represented by the expression ($x^{3}-2 x^{2}-20 x-24$). The width of the rectangular prism is represented by the expression $(x-6)$. If the height and the length are the same, what is the height of the rectangular prism?

Tuesday:

1) Simplify: $\frac{x+6}{x^{2}-36}$
2) Divide: $\frac{x+7}{x^{2}+5 x+6} \div \frac{x^{2}+7 x}{x+3}$
3) Divide: $\frac{3}{x^{2}-9} \div \frac{2}{x+3}$
4) Multiply: $\frac{2 x+6}{x^{2}+10 x+25} \bullet \frac{x^{2}-25}{x^{2}+8 x+15}$
5) Simplify: $\frac{x+1}{x^{2}-1}$

Wednesday

1)

Area = \qquad
2)

3)

Area $=$ \qquad
4)

5)

6)

Area $=$ \qquad
Area $=$ \qquad
Area $=$ \qquad

Prove the following:

1) $\sec x-\tan x \sin x=\cos x$
2) $\cos x+\tan x \sin x=\sec x$
3) $\tan x+\cot x=\sec x \csc x$
4) $1+\tan ^{2} x=\sec ^{2} x$
